首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   14篇
  国内免费   75篇
综合类   1篇
化学工业   14篇
金属工艺   97篇
机械仪表   5篇
能源动力   8篇
一般工业技术   69篇
冶金工业   10篇
原子能技术   7篇
自动化技术   1篇
  2023年   3篇
  2022年   26篇
  2021年   13篇
  2020年   18篇
  2019年   36篇
  2018年   14篇
  2017年   4篇
  2016年   10篇
  2015年   9篇
  2014年   9篇
  2013年   15篇
  2012年   4篇
  2011年   5篇
  2010年   4篇
  2009年   1篇
  2007年   5篇
  2006年   5篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2002年   5篇
  2001年   4篇
  2000年   5篇
  1999年   8篇
  1959年   1篇
排序方式: 共有212条查询结果,搜索用时 15 毫秒
1.
Environmental barrier coatings (EBCs) are used in commercial turbine engine applications as protection for ceramic matrix composites, yet the high-temperature water vapor reaction mechanism for EBC materials is not fully understood. Here, the water vapor reaction mechanism for barium strontium alumino-silicate (BSAS), an early generation EBC candidate, was determined from the time and temperature dependences of material loss. BSAS water vapor exposures were performed at 1200 °C, 1300 °C, and 1400 °C for 24, 48, and 72 h, at maximum gas velocities of ~ 240 m/s. FactSage thermodynamic calculations were shown to support the experimental findings, where the steam reaction mechanism consisted of volatilization of all BSAS oxide constituents as gaseous metal hydroxide species, i.e. Ba(OH)2, Sr(OH)2, Al(OH)3, and Si(OH)4 (g).  相似文献   
2.
Amorphous Al_2 O_3-reinforced Al composite(am-Al_2 O_3/Al) compacted from ultrafine Al powders for high-temperature usages confronts with drawbacks because crystallization of am-Al_2 O_3 at high temperatures will result in serious strength loss.Aiming at this unsolved problem,in this study,high-temperature Al materials with enhanced thermal stability were developed through introducing more thermally stable nano-sized particles via high-temperature pre-treatment of ultrafine A1 powders.It was found that the pre-treatment at ≤550℃ could introduce a few Al_2 O_3 in the Al matrix and increase the strength of the composites,but the strength was still below that of am-Al_2 O_3/Al because without being pinned firmly,grain boundaries(GBs) were softened at high temperature and intergranular fracture happened.When the pre-treatment was carried out at 600℃,nitridation and oxidation processes happened simultaneously,producing large numbers of intergranular(AlN+γ-Al_2 O_3) particles.GB sliding and intergranular fracture were suppressed;therefore,higher strength than that of am-Al_2 O_3/Al was realized.Furthermore,the(AIN+γ-Al_2 O_3)/Al exhibited more superior thermal stability compared to amAl_2 O_3/Al for annealing treatment at 580℃ for 8 h.Therefore,an effective way to fabricate high-temperature Al composite with enhanced thermal stability was developed in this study.  相似文献   
3.
Ren  Jian-kun  Chen  Yun  Cao  Yan-fei  Xu  Bin  Sun  Ming-yue  Li  Dian-zhong 《Journal of Materials Science》2021,56(21):12455-12474

Non-dendritic microstructures are generally obtained in metals after semi-solid deformation (deformation during solidification); however, dendritic growth is preferred without deformation. The fragmentation of dendrites is recognized as an essential contributing factor to non-dendritic microstructures. However, the underlying mechanism of fragmentation needs to be clarified in depth. It is infamously hard for researchers to carry out a direct observation of this process. Moreover, a comprehensive numerical survey of this process is not trivial. The present research reported a new method to model dendritic growth during semi-solid deformation. The motion and deformation of the solid coupled with liquid flow in the melt were treated as the two-phase flow because plastic materials could be formulated as non-Newtonian fluids. The vector-valued phase-field formulation and the self-constructed Navier–Stokes solver made it possible to simulate the growth, motion, deformation, fragmentation and agglomeration of two dendrites coupled with liquid flow in the melt. Computational results suggest that fragmentation can occur when the grain boundary is wet and penetrated by the melt, giving new supporting evidence to a previously proposed mechanism for the fragmentation of dendrites.

Graphical abstract
  相似文献   
4.
对于在高温环境服役的金属材料,晶界作为组织结构上的薄弱环节常常引发晶界裂纹而造成合金失效,严重影响了材料的高温力学性能表现。因而,如何改善晶界状态、提高晶界强度,是提高合金高温性能的关键。在铁/镍基奥氏体多晶合金中,采用晶界弯曲的方法强化晶界、改善合金性能一直受到国内外研究人员的广泛关注。从弯曲晶界的获得方法、形成机制及其对材料性能的影响3个方面概述了目前国内外的研究现状。较为全面地总结了特殊热处理与材料合金化等获得弯曲晶界的方法;讨论了不同合金中晶界第二相诱发晶界弯曲的驱动力和内在机理;介绍了弯曲晶界对材料力学性能、耐蚀性能及焊接性能的影响。最后,结合当前的研究现状,围绕弯曲晶界的形成条件和机制,以及弯曲晶界对性能的影响,提出了弯曲晶界未来的研究发展方向。   相似文献   
5.
Diamond content is a key factor affecting diamond/SiC composite performance, especially thermal and mechanical properties, but the composite with high diamond content manufacturing is still challenging issues. Hot mold pressing combined with liquid silicon infiltration to make diamond/SiC composites with high diamond content and relative density has been proposed in this paper. In addition, the effect of diamond particle size on the maximization of diamond content as well as properties of the composites were evaluated. The experiment shows that the content of diamond in the composites increases with the increase of the diamond particle size. When the particle size of diamond is 400 µm, the volume fraction of diamond reaches 59.08%. The highest thermal conductivity (ddia= 300 µm) and highest bending strength (ddia= 50 µm) are 616.77 W/m K (It is the maximum TC of diamond/SiC prepared by pressureless infiltration at present) and 380 MPa, respectively. This work provides a novel and efficient preparation method for further improving the thermal conductivity of diamond/SiC composites.  相似文献   
6.
The effect of sulphide(Na_2S) concentration(SC) on the corrosion and cavitation erosion behaviours of a cast nickel aluminium bronze(NAB) in 3.5% NaCl solution is investigated in this study.The results show that when the SC exceeds 50 ppm,the hydrogen evolution reaction dominates the cathodic process,and a limiting current region appears in the anodic branch of the polarisation curve due to the formation of a copper sulphide film,which is a diffusion-controlled process.After longterm immersion,the increased mass loss rate of NAB with the sulphide additions of 20 and 50 ppm is attributed to the less protective films,which contains a mixture of copper oxides and sulphides.Moreover,NAB undergoes severe localised corrosion(selective phase corrosion,SPC) at the β' phases and eutectoid microstructure α+κ_Ⅲ.By comparison,NAB undergoes general corrosion and a copper sulphide film is formed in 100 and 200 ppm sulphide solutions.Cavitation erosion greatly increases the corrosion rate of NAB in all solutions and causes a negative potential shift in 3.5% NaCl solution due to the film destruction.However,a positive potential shift occurs in the solutions with SC higher than 50 ppm due to the accelerated mass transfer of the cathodic process.The cavitation erosion mass loss rate of NAB increases with the increase of SC.The occurrence of severe SPC decreases the phase boundary cohesion and causes brittle fracture under the cavitation impact.The corrosion-enhanced erosion is the most predominant factor for the cavitation erosion damage when the SC exceeds 50 ppm.  相似文献   
7.
The hot deformation behavior and workability of a new reduced activation ferritic/martensitic steel named SIMP steel for accelerator-driven system were studied.The flow curve and its microstructure were studied at 900-1200℃ and strain rate range of 0.001-10 s~(-1).The results showed that the deformation behavior of the SIMP steel during hot compression could be manifested by the Zener-Hollomon parameter in an exponent-type equation.Based on the obtained constitutive equation,the calculated flow stresses were in agreement with the experimentally measured ones,and the average activity energies QDRV and QHW for the initiation of dynamic recrystallization and the peak strain were calculated to be 476.1 kJ/mol and 462.7 kJ/mol,respectively.Furthermore,based on the processing maps and microstructure evolution,the optimum processing condition for the SIMP steel was determined to be 1050-1200 ℃/0.001-0.1 s~(-1).  相似文献   
8.
The residual stress evolution in a safe-end/nozzle dissimilar metal welded joint of CAP1400 nuclear power plants was investigated in the manufacturing process by finite element simulation. A finite element model, including cladding, buttering, post-weld heat treatment (PWHT) and dissimilar metal multi-pass welding, is developed based on SYSWELD software to investigate the evolution of residual stress in the aforementioned manufacturing process. The results reveal a large tensile axial residual stress, which exists at the weld zone on the inner surface, leads to a high sensitivity to stress corrosion cracking (SCC). PWHT process before dissimilar metal multi-pass welding process has a great influence on the magnitude and distribution of final axial residual stress. The risk of SCC on the inner surface of the pipe will increase if PWHT process is not taken into account. Therefore, such crucial thermal manufacturing process such as cladding, buttering and post-weld heat treatment, besides the multi-pass welding process, should be considered in the numerical model in order to accurately predict the distribution and the magnitude of the residual stress.  相似文献   
9.
Structural metallic materials with excellent functional performance and lightweight features have always been the goal of material scientists' pursuit.In this work,laminated metal composites of different thicknesses(less than 0.4 mm) composed of structural materials with great differences in deformation ability were successfully fabricated via a novel processing procedure.Ultra-high strength and excellent soft magnetic properties were combined perfectly in the ultra-thin and super-light laminated metal composite strips due to unique structural design and essential attributes of the initial materials.These results emphasize the significant potential application value of the ultra-thin laminated metal composites in the field of structural and functional integration.  相似文献   
10.
Cerium malate (CeMal) was tested as a corrosion inhibitor for AA2024-T3 in this work. Corrosion inhibition on bare AA2024-T3 indicated that the inhibiting effect was a result of the synergistic effect of cerium cations and maleic anions. The corrosion of AA2024-T3 was stagnated by greatly reducing the corrosion current when CeMal was present in NaCl solutions. CeMal was adsorbed on the surface of AA2024-T3 forming a protective film in the initial stage. Then, cerium cations transformed to cerium oxide/hydroxides, precipitating on the cathode sites to inhibit the further corrosion. The electrochemical impedance spectra results of the sol-gel coatings proved that CeMal was an effective corrosion inhibitor in the sol-gel coatings to provide corrosion protection for AA2024-T3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号